Nephritis-Associated Plasmin Receptor (NAPlr): An Essential Inducer of C3-Dominant Glomerular Injury and a Potential Key Diagnostic Biomarker of Infection-Related Glomerulonephritis (IRGN)

Author:

Yoshizawa Nobuyuki,Yamada MuneharuORCID,Fujino Masayuki,Oda Takashi

Abstract

Nephritis-associated plasmin receptor (NAPlr) was originally isolated from the cytoplasmic fraction of group A Streptococci, and was found to be the same molecule as streptococcal glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and plasmin receptor (Plr) on the basis of nucleotide and amino acid sequence homology. Its main functions include GAPDH activity, plasmin-binding capacity, and direct activation of the complement alternative pathway (A-P). Plasmin trapped by deposited NAPlr triggers the degradation of extracellular matrix proteins, such as glomerular basement membranes and mesangial matrix, and the accumulation of macrophages and neutrophils, leading to the induction of plasmin-related endocapillary glomerular inflammation. Deposited NAPlr at glomerular endocapillary site directly activates the complement A-P, and the endocapillary release of complement-related anaphylatoxins, C3a and C5a, amplify the in situ endocapillary glomerular inflammation. Subsequently, circulating and in situ-formed immune complexes participate in the glomerular injury resulting in NAPlr-mediated glomerulonephritis. The disease framework of infection-related glomerulonephritis (IRGN) has been further expanded. GAPDH of various bacteria other than Streptococci have been found to react with anti-NAPlr antibodies and to possess plasmin-binding activities, allowing glomerular NAPlr and plasmin activity to be utilized as key biomarkers of IRGN.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference99 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3