Fluorescence Quenching of Tyrosine-Ag Nanoclusters by Metal Ions: Analytical and Physicochemical Assessment

Author:

Ungor DittaORCID,Bélteki Rita,Horváth Krisztián,Dömötör OrsolyaORCID,Csapó EditORCID

Abstract

A new synthesis method is described for the first time to produce silver nanoclusters (AgNCs) by using the tyrosine (Tyr) amino acid. Several important parameters (e.g., molar ratios, initial pH, reaction time etc.) were optimized to reach the highest yield. The formed Tyr-AgNCs show characteristic blue emission at λem = 410 nm, and two dominant fluorescence lifetime components were deconvoluted (τ1 ~ 3.7 and τ2 ~ 4.9 ns). The NCs contained metallic cores stabilized by dityrosine. For possible application, the interactions with several metal ions from the tap water and wastewater were investigated. Among the studied cations, four different ions (Cu2+, Ni2+, Fe3+, and Rh3+) had a dominant effect on the fluorescence of NCs. Based on the detected quenching processes, the limit of detection of the metal ions was determined. Static quenching (formation of a non-luminescent complex) was observed in all cases by temperature-dependent measurements. The calculated thermodynamic parameters showed that the interactions are spontaneous ranked in the following order of strength: Cu2+ > Fe3+ > Rh3+ > Ni2+. Based on the sign and relations of the standard enthalpy (ΔH°) and entropy changes (ΔS°), the dominant forces were also identified.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3