Microscopic and Transcriptomic Comparison of Powdery Mildew Resistance in the Progenies of Brassica carinata × B. napus

Author:

Zhang Mingzheng,Gong Qiong,Su Xing,Cheng Yaohua,Wu Haoxue,Huang ZhenORCID,Xu Aixia,Dong Jungang,Yu ChengyuORCID

Abstract

Powdery mildew is a widespread disease in rapeseed due to a lack of resistant germplasm. We compared the foliar epidermal features and transcriptomic responses between the resistant (R) and susceptible (S) plants among the two parents and progenies of Brassica carinata × B. napus. The amount of cuticular wax and callose deposition on the R plants was much lower than that on the S plants; hence, these chemicals are not all essential to pre-penetration resistance, although the cuticular wax on the R plants had more needle-like crystals. A total of 1049 genes involved in various defense responses were expressed differentially among the R/S plants. The expression levels of two well-known susceptibility genes, MLO6 and MLO12, were much lower in the R plant, indicating an important role in PM resistance. A set of genes related to wax biosynthesis (KCS6, LACS2, CER and MAH1), cell wall modification (PMR5, PMEI9, RWA2, PDCB1 and C/VIF2), chloroplast function (Chlorophyllase-1, OEP161, PSBO1, CP29B and CSP41b), receptor kinase activity (ERECTA, BAK1, BAM2, LYM1, LYM3, RLK902, RLP11, ERL1 and ERL2), IPCS2, GF14 lambda, RPS4 and RPS6 were highly expressed in the R plants. In the S plants, most highly expressed genes were involved in later defense responses, including CERK1, LYK4, LIK1, NIMIN-1, CHITINASE 10, PECTINESTERASE, CYP81F2 and RBOHF and the genes involved in salicylic acid-dependent systemic acquired resistance and hypersensitive responses, indicating the occurrence of severe fungal infection. The results indicate that some uncertain pre-penetration defenses are pivotal for high resistance, while post-penetration defenses are more important for the S plant survival.

Funder

Yangling Seed Industry Innovation Centre

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3