Polycaprolactone/Chitosan Composite Nanofiber Membrane as a Preferred Scaffold for the Culture of Mesothelial Cells and the Repair of Damaged Mesothelium

Author:

Kao Hao-Hsi,Kuo Chang-Yi,Tagadur Govindaraju Darshan,Chen Kuo-Su,Chen Jyh-PingORCID

Abstract

Mesothelial cells are specific epithelial cells lining the serosal cavity and internal organs. Nonetheless, few studies have explored the possibility to culture mesothelial cells in a nanostructure scaffold for tissue engineering applications. Therefore, this study aims to fabricate nanofibers from a polycaprolactone (PCL) and PCL/chitosan (CS) blend by electrospinning, and to elucidate the effect of CS on the cellular response of mesothelial cells. The results demonstrate that a PCL and PCL/CS nanofiber membrane scaffold could be prepared with a comparable fiber diameter (~300 nm) and porosity for cell culture. Blending CS with PCL influenced the mechanical properties of the scaffold due to interference of PCL crystallinity in the nanofibers. However, CS substantially improves scaffold hydrophilicity and results in a ~6-times-higher cell attachment rate in PCL/CS. The mesothelial cells maintain high viability in both nanofiber membranes, but PCL/CS provides better maintenance of cobblestone-like mesothelial morphology. From gene expression analysis and immunofluorescence staining, the incorporation of CS also results in the upregulated expression of mesothelial marker genes and the enhanced production of key mesothelial maker proteins, endorsing PCL/CS to better maintain the mesothelial phenotype. The PCL/CS scaffold was therefore chosen for the in vivo studies, which involved transplanting a cell/scaffold construct containing allograft mesothelial cells for mesothelium reconstruction in rats. In the absence of mesothelial cells, the mesothelium wound covered with PCL/CS showed an inflammatory response. In contrast, a mesothelium layer similar to native mesothelium tissue could be obtained by implanting the cell/scaffold construct, based on hematoxylin and eosin (H&E) and immunohistochemical staining.

Funder

Keelung Chang Gung Memorial Hospital

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3