Transcriptome Dynamics Underlying Magnesium Deficiency Stress in Three Founding Saccharum Species

Author:

Wang Yongjun,Li Yihan,Hua Xiuting,Zhang Zhe,Fan Tianqu,Yao Wei,Zhang MuqingORCID,Zhang Jisen

Abstract

Modern sugarcane cultivars were generated through interspecific crossing of the stress resistance Saccharum spontaneum and the high sugar content Saccharum officinarum which was domesticated from Saccharum robustum. Magnesium deficiency (MGD) is particularly prominent in tropical and subtropical regions where sugarcane is grown, but the response mechanism to MGD in sugarcane remains unknown. Physiological and transcriptomic analysis of the three founding Saccharum species under different magnesium (Mg) levels was performed. Our result showed that MGD decreased chlorophyll content and photosynthetic efficiency of three Saccharum species but led to increased starch in leaves and lignin content in roots of Saccharum robustum and Saccharum spontaneum. We identified 12,129, 11,306 and 12,178 differentially expressed genes (DEGs) of Saccharum officinarum, Saccharum robustum and Saccharum spontaneum, respectively. In Saccharum officinarum, MGD affected signal transduction by up-regulating the expression of xylan biosynthesis process-related genes. Saccharum robustum, responded to the MGD by regulating the expression of transcription and detoxification process-related genes. Saccharum spontaneum, avoids damage from MGD by regulating the expression of the signing transduction process and the transformation from growth and development to reproductive development. This novel repertoire of candidate genes related to MGD response in sugarcane will be helpful for engineering MGD tolerant varieties.

Funder

Science and Technology Planning Project of Guangdong Province

National key research and development program

National High-tech R&D Program

National Natural Science Foundation of China

Science and Technology Major Project of Guangxi

Fujian Provincial Department of Education

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3