Effects of Substitution Ratios of Zinc-Substituted Hydroxyapatite on Adsorption and Desorption Behaviors of Bone Morphogenetic Protein-2

Author:

Huang Baolin,Li Manchun,Mo Hailing,Chen Chuang,Chen Kun

Abstract

Understanding interactions between bone morphogenetic proteins (BMPs) and biomaterials is of great significance in preserving the structure and bioactivity of BMPs when utilized in clinical applications. Currently, bone morphogenetic protein-2 (BMP-2) is one of the most important growth factors in bone tissue engineering; however, atomistic interactions between BMP-2 and zinc-substituted hydroxyapatite (Zn-HAP, commonly used in artificial bone implants) have not been well clarified until now. Thus, in this work, the interaction energies, binding/debinding states, and molecular structures of BMP-2 upon a series of Zn-HAP surfaces (Zn-HAPs, 1 at%, 2.5 at%, 5 at%, and 10 at% substitution) were investigated by hybrid molecular dynamics (MD) and steered molecular dynamics (SMD) simulations. Meanwhile, cellular studies including alkaline phosphatase (ALP) activity and reverse transcription-polymerase chain reaction (RT-PCR) assay were performed to verify the theoretical modeling findings. It was found that, compared to pure HAP, Zn-HAPs exhibited a higher binding affinity of BMP-2 at the adsorption process; meanwhile, the detachment of BMP-2 upon Zn-HAPs was more difficult at the desorption process. In addition, molecular structures of BMP-2 could be well stabilized upon Zn-HAPs, especially for Zn10-HAP (with a 10 at% substitution), which showed both the higher stability of cystine-knots and less change in the secondary structures of BMP-2 than those upon HAP. Cellular studies confirmed that higher ALP activity and osteogenic marker gene expression were achieved upon BMP-2/Zn-HAPs than those upon BMP-2/HAP. These findings verified that Zn-HAPs favor the adsorption of BMP-2 and leverage the bioactivity of BMP-2. Together, this work clarified the interaction mechanisms between BMP-2 and Zn-HAPs at the atom level, which could provide new molecular-level insights into the design of BMP-2-loaded biomaterials for bone tissue engineering.

Funder

Science and Technology Program of Guangzhou

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3