Abstract
The success of root canal therapy depends mainly on the complete elimination of the root canal bacterial biofilm. The validity and biocompatibility of root canal disinfectant materials are imperative for the success of root canal treatment. However, the insufficiency of the currently available root canal disinfectant materials highlights that more advanced materials are still needed. In this study, a nanozyme-loaded hydrogel (Fe3O4-CaO2-Hydrogel) was modified and analyzed as a root canal disinfectant material. Fe3O4-CaO2-Hydrogel was fabricated and examined for its release profile, biocompatibility, and antibacterial activity against E. faecalis and S. sanguis biofilms in vitro. Furthermore, its efficiency in eliminating the root canal bacterial biofilm removal in SD rat teeth was also evaluated. The results in vitro showed that Fe3O4-CaO2-Hydrogel could release reactive oxygen species (ROS). Moreover, it showed good biocompatibility, disrupting bacterial cell membranes, and inhibiting exopolysaccharide production (p < 0.0001). In addition, in vivo results showed that Fe3O4-CaO2-Hydrogel strongly scavenged on root canal biofilm infection and prevented further inflammation expansion (p < 0.05). Altogether, suggesting that Fe3O4-CaO2-Hydrogel can be used as a new effective biocompatible root canal disinfectant material. Our research provides a broad prospect for clinical root canal disinfection, even extended to other refractory infections in deep sites.
Funder
Jilin Province Science and Technology Department
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献