Regulation of Expression of Cannabinoid CB2 and Serotonin 5HT1A Receptor Complexes by Cannabinoids in Animal Models of Hypoxia and in Oxygen/Glucose-Deprived Neurons

Author:

Lillo Jaume,Raïch IuORCID,Silva Laura,Zafra David A.,Lillo Alejandro,Ferreiro-Vera CarlosORCID,Sánchez de Medina Verónica,Martínez-Orgado JoséORCID,Franco RafaelORCID,Navarro Gemma

Abstract

Background: Cannabidiol (CBD) is a phytocannabinoid with potential in one of the most prevalent syndromes occurring at birth, the hypoxia of the neonate. CBD targets a variety of proteins, cannabinoid CB2 and serotonin 5HT1A receptors included. These two receptors may interact to form heteromers (CB2–5HT1A-Hets) that are also a target of CBD. Aims: We aimed to assess whether the expression and function of CB2–5HT1A-Hets is affected by CBD in animal models of hypoxia of the neonate and in glucose- and oxygen-deprived neurons. Methods: We developed a quantitation of signal transduction events in a heterologous system and in glucose/oxygen-deprived neurons. The expression of receptors was assessed by immuno-cyto and -histochemistry and, also, by using the only existing technique to visualize CB2–5HT1A-Hets fixed cultured cells and tissue sections (in situ proximity ligation PLA assay). Results: CBD and cannabigerol, which were used for comparative purposes, affected the structure of the heteromer, but in a qualitatively different way; CBD but not CBG increased the affinity of the CB2 and 5HT1A receptor–receptor interaction. Both cannabinoids regulated the effects of CB2 and 5HT1A receptor agonists. CBD was able to revert the upregulation of heteromers occurring when neurons were deprived of oxygen and glucose. CBD significantly reduced the increased expression of the CB2–5HT1A-Het in glucose/oxygen-deprived neurons. Importantly, in brain sections of a hypoxia/ischemia animal model, administration of CBD led to a significant reduction in the expression of CB2–5HT1A-Hets. Conclusions: Benefits of CBD in the hypoxia of the neonate are mediated by acting on CB2–5HT1A-Hets and by reducing the aberrant expression of the receptor–receptor complex in hypoxic-ischemic conditions. These results reinforce the potential of CBD for the therapy of the hypoxia of the neonate.

Funder

Spanish Ministry of Science Innovation and Universities. Spanish Agencia Estatal de Investigación

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3