Affiliation:
1. Metallurgical Process, Heat Engineering and Technology of Special Materials Department, Satbayev University, Almaty 050013, Kazakhstan
2. JSC Institute of Fuel, Catalysis and Electrochemistry Named after. D.V. Sokolsky, Sector of Rare Trace Elements, Almaty 050010, Kazakhstan
Abstract
Research analysis reveals factors influencing third-phase crud formation and composition during metal extraction, including solution composition, solid suspensions, organic compounds, colloidal compounds (e.g., silicic acid), and extractant purity. Compositional analysis of copper-containing sulfuric acid solutions (1.25 g/dm3 copper) identifies principal sulfate-forming components. Copper extraction was studied using extractants LIX 984N, ACORGA M5774, and M5640 at different ratios of the organic phase to the aqueous O:A (from 1:2 to 1:10). Suppressive impact of 10 vol.% CR60 additive on third-phase crud formation during copper extraction with LIX 984N, ACORGA M5774, and M5640 is analyzed, with ACORGA M5774 being the most effective. Physicochemical analysis characterizes CR60’s active substance as poly(sodium 4-styrenesulfonate) with steel-suppression properties, and its structural formula is determined. Optimal copper extraction conditions establish ACORGA M5640’s 24% efficiency, followed by ACORGA M5774 at 15%. CR60 reduces crud formation, with 5 cm3 of ACORGA CR60 added to sulfuric acid solution reducing interfacial crud formation by 2–3 times. Optimal extraction parameters include 1:2 O:A ratio, 20 ± 5 °C temperature, 5 cm3 CR60 additive, 5 min process duration, and 1-day settling time. ACORGA M5774 (10 vol.% in kerosene) is recommended as an extractant, with 2–3 stages of countercurrent extraction.
Funder
Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan