Removal of Trace Cu2+ from Water by Thermo-Modified Micron Bamboo Charcoal and the Effects of Dosage

Author:

Li Xinmei1,Gui Wenqian1,Batzorig Uulen1ORCID,Zhang Rong1,Li Hui1,Pan Dandan1

Affiliation:

1. School of Environment & Resources, Anhui Agricultural University, Hefei 230036, China

Abstract

Chronic copper intoxication via drinking water induces diseases and physiological toxicity. Bamboo charcoal has been applied in the treatment of copper (Cu2+) in water. However, the adsorption by micron bamboo charcoal (MBC) of trace Cu2+ in tap drinking water and the underlying factors behind it have not been sufficiently reported. In this study, to improve the adsorption by MBC of trace levels of Cu2+ in drinking water, MBC was thermo-modified and characterized. Through batch experiments, the adsorption equilibrium was analyzed, and isotherm models were simulated. The removal rates and the optimization were investigated through a general full factorial design including the thermo-modified temperature (MT), initial concentration (C0), and dosage. The results indicated that the thermo-modification significantly improved the removal by MBC of Cu2+ at trace level C0. The satisfactorily low level of 0.12 ± 0.01 mg⋅L−1 was achieved in the range of C0 from 0.5 to 2.0 mg⋅L−1 within the short contact time of 0.5 h. The processes conformed to the Freundlich and Langmuir adsorption isothermal models at a C0 lower than 4.0 mg⋅L−1 and higher than 8.0 mg⋅L−1. The correlation between C0 and dosage played an important role in the removal of Cu2+. This work proposes the application of the ecofriendly material MBC and an optimization mode in the removal of trace Cu2+ from tap drinking water. It is also revealed that the positive and negative correlation and the “critical point” of the removal rate with dosage depend on the initial concentrations.

Funder

Natural Science Foundation of Anhui Province

Anhui Provincial Department of Science and Technology

Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3