Estimating the Nucleation Ability of Various Surfaces Towards Isotactic Polypropylene via Light Intensity Induction Time Measurements

Author:

Carmeli Enrico,Wang Bao,Moretti Paolo,Tranchida DavideORCID,Cavallo Dario

Abstract

Crystallization of isotactic polypropylene (iPP) at the interface with crystalline films of two commercially employed nucleating agents (sodium benzoate (NaBz) and sodium 2,2’-methylene bis-(4,6-di-tert-butylphenyl)phosphate (NA-11)) and with a glass fiber (GF) was investigated using a polarized optical microscope. The analysis of the light intensity evolution during the crystallization process enabled the successful estimation of the time at which the crystal growth began, i.e., the induction time (ti), at various crystallization temperatures. Meaningful differences in the ti values were observed between the investigated systems. Moreover, the ti data have been analyzed according to different nucleation models proposed in the literature, which consider either the time to form the first crystalline layer in contact with the substrate or the time required to grow a cluster of critical size. It has been found that the two models are applicable in different temperature ranges depending on the efficiency of the given substrate. Therefore, in order to obtain the value of the surface free energy difference function, Δσ, which is directly related to the nucleation energy barrier and useful for the definition of a universal nucleating efficiency scale, a model that considers both the above-mentioned times was fitted to the overall data. The values of Δσ for the nucleation of iPP on the surface of the different substrates are thus obtained and discussed in the framework of the literature results.

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3