An Integrated Approach for Making Inference on the Number of Clusters in a Mixture Model

Author:

Saraiva Erlandson Ferreira,Suzuki  Adriano Kamimura,Milan Luis AparecidoORCID,Pereira Carlos Alberto de BragançaORCID

Abstract

This paper presents an integrated approach for the estimation of the parameters of a mixture model in the context of data clustering. The method is designed to estimate the unknown number of clusters from observed data. For this, we marginalize out the weights for getting allocation probabilities that depend on the number of clusters but not on the number of components of the mixture model. As an alternative to the stochastic expectation maximization (SEM) algorithm, we propose the integrated stochastic expectation maximization (ISEM) algorithm, which in contrast to SEM, does not need the specification, a priori, of the number of components of the mixture. Using this algorithm, one estimates the parameters associated with the clusters, with at least two observations, via local maximization of the likelihood function. In addition, at each iteration of the algorithm, there exists a positive probability of a new cluster being created by a single observation. Using simulated datasets, we compare the performance of the ISEM algorithm against both SEM and reversible jump (RJ) algorithms. The obtained results show that ISEM outperforms SEM and RJ algorithms. We also provide the performance of the three algorithms in two real datasets.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3