Double-Differenced dNBR: Combining MODIS and Landsat Imagery to Map Fine-Grained Fire MOSAICS in Lowland Eucalyptus Savanna in Kakadu National Park, Northern Australia

Author:

Williamson Grant J.ORCID,Ellis Todd M.,Bowman David M. J. S.ORCID

Abstract

A neglected dimension of the fire regime concept is fire patchiness. Habitat mosaics that emerge from the grain of burned and unburned patches (pyrodiversity) are critical for the persistence of a diverse range of plant and animal species. This issue is of particular importance in frequently burned tropical Eucalyptus savannas, where coarse fire mosaics have been hypothesized to have caused the recent drastic population declines of small mammals. Satellites routinely used for fire mapping in these systems are unable to accurately map fine-grained fire mosaics, frustrating our ability to determine whether declines in biodiversity are associated with local pyrodiversity. To advance this problem, we have developed a novel method (we call ‘double-differenced dNBR’) that combines the infrequent (c. 16 days) detailed spatial resolution Landsat with daily coarse scale coverage of MODIS and VIIRS to map pyrodiversity in the savannas of Kakadu National Park. We used seasonal Landsat mosaics and differenced normalized burn ratio (dNBR) to define burned areas, with a modification to dNBR that subtracts long-term average dNBR to increase contrast. Our results show this approach is effective in mapping fine-scale fire mosaics in the homogenous lowland savannas, although inappropriate for nearby heterogenous landscapes. Comparison of this methods to other fire metrics (e.g., area burned, seasonality) based on Landsat and MODIS imagery suggest this method is likely accurate and better at quantifying fine-scale patchiness of fire, albeit it demands detailed field validation.

Funder

NSW Department of Planning, Industry and Environment

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3