Estimation of Terrestrial Global Gross Primary Production (GPP) with Satellite Data-Driven Models and Eddy Covariance Flux Data

Author:

Joiner Joanna,Yoshida Yasuko,Zhang Yao,Duveiller Gregory,Jung Martin,Lyapustin AlexeiORCID,Wang Yujie,Tucker Compton

Abstract

We estimate global terrestrial gross primary production (GPP) based on models that use satellite data within a simplified light-use efficiency framework that does not rely upon other meteorological inputs. Satellite-based geometry-adjusted reflectances are from the MODerate-resolution Imaging Spectroradiometer (MODIS) and provide information about vegetation structure and chlorophyll content at both high temporal (daily to monthly) and spatial (∼1 km) resolution. We use satellite-derived solar-induced fluorescence (SIF) to identify regions of high productivity crops and also evaluate the use of downscaled SIF to estimate GPP. We calibrate a set of our satellite-based models with GPP estimates from a subset of distributed eddy covariance flux towers (FLUXNET 2015). The results of the trained models are evaluated using an independent subset of FLUXNET 2015 GPP data. We show that variations in light-use efficiency (LUE) with incident PAR are important and can be easily incorporated into the models. Unlike many LUE-based models, our satellite-based GPP estimates do not use an explicit parameterization of LUE that reduces its value from the potential maximum under limiting conditions such as temperature and water stress. Even without the parameterized downward regulation, our simplified models are shown to perform as well as or better than state-of-the-art satellite data-driven products that incorporate such parameterizations. A significant fraction of both spatial and temporal variability in GPP across plant functional types can be accounted for using our satellite-based models. Our results provide an annual GPP value of ∼140 Pg C year - 1 for 2007 that is within the range of a compilation of observation-based, model, and hybrid results, but is higher than some previous satellite observation-based estimates.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3