Integration of Low-Resolution ALS and Ground-Based SfM Photogrammetry Data. A Cost-Effective Approach Providing an ‘Enhanced 3D Model’ of the Hound Tor Archaeological Landscapes (Dartmoor, South-West England)

Author:

Holata Lukáš,Plzák Jindřich,Světlík Radek,Fonte JoãoORCID

Abstract

Airborne laser scanning (ALS) data is increasingly distributed freely for ever larger territories, albeit usually in only low resolution. This data source is extensively used in archaeology; however, various remains of past human activities are not recorded in sufficient detail, or are missing completely. The main purpose of this paper is to present a cost-effective approach providing reliable and accurate 3D documentation of the deserted medieval settlement of Hound Tor, a complex site consisting of preserved stone building walls and field system remains. The proposed procedure integrates ALS data with structure from motion (SfM) photogrammetry into a single data source (point cloud). Taking advantage of the benefits of both techniques (reclassified ALS data documents the hinterland, while SfM records the residential area in high detail), an enhanced 3D model has been created surpassing the available ALS data and reflecting the actual state of preserved features. The final outputs will help with the management of the site, its presentation to the general public, and also to enrich understanding of it. As both data sources are currently easily accessible and the proposed procedure has only limited budget requirements, it can be easily adopted and applied extensively (e.g., for virtual preservation of threatened complex sites and areas).

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference63 articles.

1. Interpreting Archaeological Topography: Airborne Laser Scanning, 3D Data and Ground Observation;Opitz,2013

2. Factors affecting the quality of DTM generation in forested areas;Hyyppä;Int. Arch. Photogramm., Remote Sens. Spat. Inf. Sci.,2005

3. Using airborne small-footprint laser scanner data for detection of cultural remains in forests: an experimental study of the effects of pulse density and DTM smoothing

4. Airborne LiDAR for DEM generation: some critical issues

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3