Fall Detection with CNN-Casual LSTM Network

Author:

Wu JiangORCID,Wang Jiale,Zhan Ao,Wu Chengyu

Abstract

Falls are one of the main causes of elderly injuries. If the faller can be found in time, further injury can be effectively avoided. In order to protect personal privacy and improve the accuracy of fall detection, this paper proposes a fall detection algorithm using the CNN-Casual LSTM network based on three-axis acceleration and three-axis rotation angular velocity sensors. The neural network in this system includes an encoding layer, a decoding layer, and a ResNet18 classifier. Furthermore, the encoding layer includes three layers of CNN and three layers of Casual LSTM. The decoding layer includes three layers of deconvolution and three layers of Casual LSTM. The decoding layer maps spatio-temporal information to a hidden variable output that is more conducive relative to the work of the classification network, which is classified by ResNet18. Moreover, we used the public data set SisFall to evaluate the performance of the algorithm. The results of the experiments show that the algorithm has high accuracy up to 99.79%.

Funder

Zhejiang Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

Information Systems

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Time-Critical Fall Prediction Based on Lipschitz Data Analysis and Design of a Reconfigurable Walker for Preventing Fall Injuries;IEEE Access;2024

2. Deep Learning Based Fall Detection System;2023 IEEE 9th International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA);2023-10-17

3. A comprehensive review of machine learning algorithms and their application in geriatric medicine: present and future;Aging Clinical and Experimental Research;2023-09-08

4. Temperature prediction based on XGBoost-PredRNN++;Second International Conference on Electronic Information Technology (EIT 2023);2023-08-15

5. Wearable Smart Sensing and UWB System for Fall Detection in AAL Environments;2023 IEEE Sensors Applications Symposium (SAS);2023-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3