Abstract
In recent years, we have seen a wide use of Artificial Intelligence (AI) applications in the Internet and everywhere. Natural Language Processing and Machine Learning are important sub-fields of AI that have made Chatbots and Conversational AI applications possible. Those algorithms are built based on historical data in order to create language models, however historical data could be intrinsically discriminatory. This article investigates whether a Conversational AI could identify offensive language and it will show how large language models often produce quite a bit of unethical behavior because of bias in the historical data. Our low-level proof-of-concept will present the challenges to detect offensive language in social media and it will discuss some steps to propitiate strong results in the detection of offensive language and unethical behavior using a Conversational AI.
Reference48 articles.
1. Introduction
2. Dialog systems and chatbots;Jurafsky;Speech Lang. Proc.,2017
3. Semantic complexity in end-to-end spoken language understanding;McKenna;arXiv,2020
4. A Hybrid Dictionary Model for Ethical Analysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献