Ascorbic Acid Reduces Neurotransmission, Synaptic Plasticity, and Spontaneous Hippocampal Rhythms in In Vitro Slices

Author:

Heruye Segewkal H.ORCID,Warren Ted J.,Kostansek IV Joseph A.,Draves Samantha B.,Matthews Stephanie A.,West Peter J.,Simeone Kristina A.,Simeone Timothy A.ORCID

Abstract

Ascorbic acid (AA; a.k.a. vitamin C) is well known for its cellular protection in environments of high oxidative stress. Even though physiological concentrations of AA in the brain are significant (0.2–10 mM), surprisingly little is known concerning the role of AA in synaptic neurotransmission under normal, non-disease state conditions. Here, we examined AA effects on neurotransmission, plasticity and spontaneous network activity (i.e., sharp waves and high frequency oscillations; SPW-HFOs), at the synapse between area 3 and 1 of the hippocampal cornu ammonis region (CA3 and CA1) using an extracellular multi-electrode array in in vitro mouse hippocampal slices. We found that AA decreased evoked field potentials (fEPSPs, IC50 = 0.64 mM) without affecting V50s or paired pulse facilitation indicating normal neurotransmitter release mechanisms. AA decreased presynaptic fiber volleys but did not change fiber volley-to-fEPSP coupling, suggesting reduced fEPSPs resulted from decreased fiber volleys. Inhibitory effects were also observed in CA1 stratum pyramidale where greater fEPSPs were required for population spikes in the presence of AA suggesting an impact on the intrinsic excitability of neurons. Other forms of synaptic plasticity and correlates of memory (i.e., short- and long-term potentiation) were also significantly reduced by AA as was the incidence of spontaneous SPW-HFOs. AA decreased SPW amplitude with a similar IC50 as fEPSPs (0.65 mM). Overall, these results indicate that under normal conditions AA significantly regulates neurotransmission, plasticity, and network activity by limiting excitability. Thus, AA may participate in refinement of signal processing and memory formation, as well as protecting against pathologic excitability.

Funder

National Institute of Neurological Disorders and Stroke

National Center for Research Resources

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3