Bed-Based Ballistocardiography: Dataset and Ability to Track Cardiovascular Parameters

Author:

Carlson CharlesORCID,Turpin Vanessa-Rose,Suliman AhmadORCID,Ade Carl,Warren Steve,Thompson David E.

Abstract

Background: The goal of this work was to create a sharable dataset of heart-driven signals, including ballistocardiograms (BCGs) and time-aligned electrocardiograms (ECGs), photoplethysmograms (PPGs), and blood pressure waveforms. Methods: A custom, bed-based ballistocardiographic system is described in detail. Affiliated cardiopulmonary signals are acquired using a GE Datex CardioCap 5 patient monitor (which collects ECG and PPG data) and a Finapres Medical Systems Finometer PRO (which provides continuous reconstructed brachial artery pressure waveforms and derived cardiovascular parameters). Results: Data were collected from 40 participants, 4 of whom had been or were currently diagnosed with a heart condition at the time they enrolled in the study. An investigation revealed that features extracted from a BCG could be used to track changes in systolic blood pressure (Pearson correlation coefficient of 0.54 +/− 0.15), dP/dtmax (Pearson correlation coefficient of 0.51 +/− 0.18), and stroke volume (Pearson correlation coefficient of 0.54 +/− 0.17). Conclusion: A collection of synchronized, heart-driven signals, including BCGs, ECGs, PPGs, and blood pressure waveforms, was acquired and made publicly available. An initial study indicated that bed-based ballistocardiography can be used to track beat-to-beat changes in systolic blood pressure and stroke volume. Significance: To the best of the authors’ knowledge, no other database that includes time-aligned ECG, PPG, BCG, and continuous blood pressure data is available to the public. This dataset could be used by other researchers for algorithm testing and development in this fast-growing field of health assessment, without requiring these individuals to invest considerable time and resources into hardware development and data collection.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Blood pressure monitoring with piezoelectric bed sensor systems;Biomedical Signal Processing and Control;2024-01

2. Feasibility of Unobtrusively Estimating Blood Pressure Using Load Cells under the Legs of a Bed;Sensors;2023-12-24

3. Analysis of the Chaotic Component of Photoplethysmography and Its Association with Hemodynamic Parameters;Entropy;2023-11-24

4. SleepABP: Noninvasive Ambulatory Blood Pressure Monitoring Based on Ballistocardiogram in Sleep State;Adjunct Proceedings of the 2023 ACM International Joint Conference on Pervasive and Ubiquitous Computing & the 2023 ACM International Symposium on Wearable Computing;2023-10-08

5. RGB Camera-Based Blood Pressure Measurement Using U-Net Basic Generative Model;Electronics;2023-09-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3