Modelling Projected Changes in Soil Water Budget in Coastal Kenya under Different Long-Term Climate Change Scenarios

Author:

Okello CorneliusORCID,Greggio NicolasORCID,Giambastiani Beatrice Maria SoleORCID,Wambiji Nina,Nzeve JuliusORCID,Antonellini MarcoORCID

Abstract

The possible impacts that climate change will have on soil water budget and specifically on deep percolation, runoff and soil water content have been investigated using HYDRUS, a methodology based on numerical modelling simulations of vertical water movement in a homogenous soil column on a flat surface. This study was carried out on four typical soil types occurring on the Kenyan coast and the adjacent hinterlands of up to an elevation of 200 m above sea level (m a.s.l.) covered by five weather stations (two dry and three wet stations). Results show that deep percolation and runoff are expected to be higher in 2100 for both Relative Concentration Pathways (RCPs) 2.6 and 8.5 scenarios than they were for the reference period (1986–2005). The average deep percolation is expected to increase by 14% for RCP 2.6 and 10% for the RCP 8.5, while the average runoff is expected to increase by 188% and 284% for the same scenarios. Soil water content is expected to either increase marginally or reduce depend in the same scenarios. The average soil water content is also expected to increase by 1% in the RCP 2.6 scenario and to decrease by 2% in the RCP 8.5 scenario. Increase in deep percolation through clay soil is expected to be the largest (29% in both scenarios), while sandy and sandy clay soil are expected to be the least influenced with an average increase of only 2%. Climate change is expected to impact runoff mostly in sandy soils, whereas the least affected would be clay loam soils. These results further support the assertion that the change in climate is expected to impact the recharge of aquifers by triggering an increase in infiltration under both scenarios.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3