Abstract
The integral representation of the two-parameter Mittag-Leffler function E ρ , μ ( z ) is considered in the paper that expresses its value in terms of the contour integral. For this integral representation, the transition is made from integration over a complex variable to integration over real variables. It is shown that as a result of such a transition, the integral representation of the function E ρ , μ ( z ) has two forms: the representation “A” and “B”. Each of these representations has its advantages and drawbacks. In the paper, the corresponding theorems are formulated and proved, and the advantages and disadvantages of each of the obtained representations are discussed.
Funder
Russian Foundation for Basic Research
Ministry of Science and Higher Education of the Russian Federation
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献