Q-Curve and Area Rules for Choosing Heuristic Parameter in Tikhonov Regularization

Author:

Raus ToomasORCID,Hämarik UnoORCID

Abstract

We consider choice of the regularization parameter in Tikhonov method if the noise level of the data is unknown. One of the best rules for the heuristic parameter choice is the quasi-optimality criterion where the parameter is chosen as the global minimizer of the quasi-optimality function. In some problems this rule fails. We prove that one of the local minimizers of the quasi-optimality function is always a good regularization parameter. For the choice of the proper local minimizer we propose to construct the Q-curve which is the analogue of the L-curve, but on the x-axis we use modified discrepancy instead of discrepancy and on the y-axis the quasi-optimality function instead of the norm of the approximate solution. In the area rule we choose for the regularization parameter such local minimizer of the quasi-optimality function for which the area of the polygon, connecting on Q-curve this minimum point with certain maximum points, is maximal. We also provide a posteriori error estimates of the approximate solution, which allows to check the reliability of the parameter chosen heuristically. Numerical experiments on an extensive set of test problems confirm that the proposed rules give much better results than previous heuristic rules. Results of proposed rules are comparable with results of the discrepancy principle and the monotone error rule, if the last two rules use the exact noise level.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference40 articles.

1. Regularization of Inverse Problems, Volume 375 of Mathematics and Its Applications;Engl,1996

2. Iteration Procedures in Ill- Posed Problems;Vainikko,1986

3. The quasi-optimality criterion for classical inverse problems

4. On Minimization Strategies for Choice of the Regularization Parameter in Ill-Posed Problems

5. Convergence analysis of minimization-based noise level-free parameter choice rules for linear ill-posed problems;Kindermann;Electron. Trans. Numer. Anal.,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3