Author:
Stamov Gani,Stamova Ivanka,Venkov George,Stamov Trayan,Spirova Cvetelina
Abstract
The present paper introduces the concept of integral manifolds for a class of delayed impulsive neural networks of Cohen–Grossberg-type with reaction–diffusion terms. We establish new existence and boundedness results for general types of integral manifolds with respect to the system under consideration. Based on the Lyapunov functions technique and Poincarѐ-type inequality some new global stability criteria are also proposed in our research. In addition, we consider the case when the impulsive jumps are not realized at fixed instants. Instead, we investigate a system under variable impulsive perturbations. Finally, examples are given to demonstrate the efficiency and applicability of the obtained results.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献