A Numerical Approach for the Heat Transfer Flow of Carboxymethyl Cellulose-Water Based Casson Nanofluid from a Solid Sphere Generated by Mixed Convection under the Influence of Lorentz Force

Author:

Alwawi Firas A.ORCID,Alkasasbeh Hamzeh T.,Rashad Ahmed M.ORCID,Idris Ruwaidiah

Abstract

The heat transfer of a carboxymethyl cellulose aqueous solution (CMC-water) based Casson nanofluid, flowing under the impact of a variable-strength magnetic field in mixed convection around a solid sphere, has been examined in this work. Aluminum (Al), copper (Cu), and silver (Ag) nanoparticles were employed to support the heat transfer characteristics of the host fluid. A numerical approach called the Keller-box method (KBM) was used to solve the governing system for the present problem, and also to examine and analyze the numerical and graphic results obtained by the MATLAB program, verifying their accuracy through comparing them with the prior literature. The results demonstrate that a Al–CMC-water nanoliquid is superior in terms of heat transfer rate and skin friction. The velocity of CMC-water is higher with Ag compared to Al–CMC-water, and Ag–CMC-water possesses the lowest temperature. Growing mixed parameter values result in a rising skin friction, velocity and Nusselt number or decline in temperature.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3