Verification of Cyberphysical Systems

Author:

Sirjani Marjan,Lee Edward A.,Khamespanah Ehsan

Abstract

The value of verification of cyberphysical systems depends on the relationship between the state of the software and the state of the physical system. This relationship can be complex because of the real-time nature and different timelines of the physical plant, the sensors and actuators, and the software that is almost always concurrent and distributed. In this paper, we study different ways to construct a transition system model for the distributed and concurrent software components of a CPS. The purpose of the transition system model is to enable model checking, an established and widely used verification technique. We describe a logical-time-based transition system model, which is commonly used for verifying programs written in synchronous languages, and derive the conditions under which such a model faithfully reflects physical states. When these conditions are not met (a common situation), a finer-grained event-based transition system model may be required. We propose an approach for formal verification of cyberphysical systems using Lingua Franca, a language designed for programming cyberphysical systems, and Rebeca, an actor-based language designed for model checking distributed event-driven systems. We focus on the cyber part and model a faithful interface to the physical part. Our method relies on the assumption that the alignment of different timelines during the execution of the system is the responsibility of the underlying platforms. We make those assumptions explicit and clear.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference40 articles.

1. Cyber Physical Systems: Design Challenges

2. Introduction to Embedded Systems—A Cyber-Physical Systems Approach;Lee,2017

3. Principles of Cyber-Physical Systems;Alur,2019

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LTL-specification for development and verification of logical control programs in feedback systems;Modeling and Analysis of Information Systems;2024-09-13

2. CRYSTAL framework: Cybersecurity assurance for cyber-physical systems;Journal of Logical and Algebraic Methods in Programming;2024-06

3. Formal Verification of Consistency for Systems with Redundant Controllers;Electronic Proceedings in Theoretical Computer Science;2024-03-27

4. Tiny Twins for detecting cyber-attacks at runtime using concise Rebeca time transition system;Journal of Parallel and Distributed Computing;2024-02

5. Actors Upgraded for Variability, Adaptability, and Determinism;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3