Parameter Identification in Nonlinear Mechanical Systems with Noisy Partial State Measurement Using PID-Controller Penalty Functions

Author:

Manikantan R.,Chakraborty Sayan,Uchida Thomas K.,Vyasarayani C. P.

Abstract

Dynamic models of physical systems often contain parameters that must be estimated from experimental data. In this work, we consider the identification of parameters in nonlinear mechanical systems given noisy measurements of only some states. The resulting nonlinear optimization problem can be solved efficiently with a gradient-based optimizer, but convergence to a local optimum rather than the global optimum is common. We augment the dynamic equations with a morphing parameter and a proportional–integral–derivative (PID) controller to transform the objective function into a convex function; the global optimum can then be found using a gradient-based optimizer. The morphing parameter is used to gradually remove the PID controller in a sequence of steps, ultimately returning the model to its original form. An optimization problem is solved at each step, using the solution from the previous step as the initial guess. This strategy enables use of a gradient-based optimizer while avoiding convergence to a local optimum. The efficacy of the proposed approach is demonstrated by identifying parameters in the van der Pol–Duffing oscillator, a hydraulic engine mount system, and a magnetorheological damper system. Our method outperforms genetic algorithm and particle swarm optimization strategies, and demonstrates robustness to measurement noise.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference38 articles.

1. The Nature of Mathematical Modeling;Gershenfeld,1999

2. Literature Review and Implementation of Parameter Identification Methods for Multibody Systems Governed by Differential Algebraic Equations;Frewin,2013

3. Theory and Practice of Recursive Identification;Söderström,1983

4. Engineering Optimization: Theory and Applications;Rao,2009

5. Genetic Algorithms in Search, Optimization and Machine Learning;Goldberg,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3