An Ionospheric Anomaly Monitor Based on the One Class Support Vector Algorithm for the Ground-Based Augmentation System

Author:

Gao Zhen,Fang KunORCID,Zhu Yanbo,Wang Zhipeng,Guo Kai

Abstract

An ionospheric anomaly is the irregular change of the ionosphere. It may result in potential threats for the ground-based augmentation system (GBAS) supporting the high-level precision approach. To counter the hazardous anomalies caused by the steep gradient in ionospheric delays, customized monitors are equipped in GBAS architectures. A major challenge is to rapidly detect the ionospheric gradient anomaly from environmental noise to meet the safety-critical requirements. A one-class support vector machine (OCSVM)-based monitor is developed to clearly detect ionospheric anomalies and to improve the robust detection speed. An offline-online framework based on the OCSVM is proposed to extract useful information related to anomalous characteristics in the presence of noise. To validate the effectiveness of the proposed framework, the influence of noise is fully considered and analyzed based on synthetic, semi-simulated, and real data from a typical ionospheric anomaly event. Synthetic results show that the OCSVM-based monitor can identify the anomaly that cannot be detected by other commonly-used monitors, such as the CCD-1OF, CCD-2OF and KLD-1OF. Semi-simulation results show that compared with other monitors, the newly proposed monitor can improve the average detection speed by more than 40% and decrease the minimum detectable gradient change rate to 0.002 m/s. Furthermore, in the real ionospheric anomaly event experiment, compared with other monitors, the OCSVM-based monitor can improve the detection speed by 16%. The result indicates that the proposed monitor has encouraging potential to ensure integrity of the GBAS.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Civil Aviation Security Capacity Building Fund Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3