Emulation of Sun-Induced Fluorescence from Radiance Data Recorded by the HyPlant Airborne Imaging Spectrometer

Author:

Morata MiguelORCID,Siegmann BastianORCID,Morcillo-Pallarés PabloORCID,Rivera-Caicedo Juan PabloORCID,Verrelst JochemORCID

Abstract

The retrieval of sun-induced fluorescence (SIF) from hyperspectral radiance data grew to maturity with research activities around the FLuorescence EXplorer satellite mission FLEX, yet full-spectrum estimation methods such as the spectral fitting method (SFM) are computationally expensive. To bypass this computational load, this work aims to approximate the SFM-based SIF retrieval by means of statistical learning, i.e., emulation. While emulators emerged as fast surrogate models of simulators, the accuracy-speedup trade-offs are still to be analyzed when the emulation concept is applied to experimental data. We evaluated the possibility of approximating the SFM-like SIF output directly based on radiance data while minimizing the loss in precision as opposed to SFM-based SIF. To do so, we implemented a double principal component analysis (PCA) dimensionality reduction, i.e., in both input and output, to achieve emulation of multispectral SIF output based on hyperspectral radiance data. We then evaluated systematically: (1) multiple machine learning regression algorithms, (2) number of principal components, (3) number of training samples, and (4) quality of training samples. The best performing SIF emulator was then applied to a HyPlant flight line containing at sensor radiance information, and the results were compared to the SFM SIF map of the same flight line. The emulated SIF map was quasi-instantaneously generated, and a good agreement against the reference SFM map was obtained with a R2 of 0.88 and NRMSE of 3.77%. The SIF emulator was subsequently applied to 7 HyPlant flight lines to evaluate its robustness and portability, leading to a R2 between 0.68 and 0.95, and a NRMSE between 6.42% and 4.13%. Emulated SIF maps proved to be consistent while processing time was in the order of 3 min. In comparison, the original SFM needed approximately 78 min to complete the SIF processing. Our results suggest that emulation can be used to efficiently reduce computational loads of SIF retrieval methods.

Funder

European Research Council

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3