Satellite Image Classification Using a Hierarchical Ensemble Learning and Correlation Coefficient-Based Gravitational Search Algorithm

Author:

Thiagarajan Kowsalya,Manapakkam Anandan MukunthanORCID,Stateczny AndrzejORCID,Bidare Divakarachari ParameshachariORCID,Kivudujogappa Lingappa Hemalatha

Abstract

Satellite image classification is widely used in various real-time applications, such as the military, geospatial surveys, surveillance and environmental monitoring. Therefore, the effective classification of satellite images is required to improve classification accuracy. In this paper, the combination of Hierarchical Framework and Ensemble Learning (HFEL) and optimal feature selection is proposed for the precise identification of satellite images. The HFEL uses three different types of Convolutional Neural Networks (CNN), namely AlexNet, LeNet-5 and a residual network (ResNet), to extract the appropriate features from images of the hierarchical framework. Additionally, the optimal features from the feature set are extracted using the Correlation Coefficient-Based Gravitational Search Algorithm (CCGSA). Further, the Multi Support Vector Machine (MSVM) is used to classify the satellite images by extracted features from the fully connected layers of the CNN and selected features of the CCGSA. Hence, the combination of HFEL and CCGSA is used to obtain the precise classification over different datasets such as the SAT-4, SAT-6 and Eurosat datasets. The performance of the proposed HFEL–CCGSA is analyzed in terms of accuracy, precision and recall. The experimental results show that the HFEL–CCGSA method provides effective classification over the satellite images. The classification accuracy of the HFEL–CCGSA method is 99.99%, which is high when compared to AlexNet, LeNet-5 and ResNet.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Remote sensing image classification using modified random forest with empirical loss function through crowd-sourced data;Multimedia Tools and Applications;2023-11-27

2. Detection System of Computer Network Virus Password Algorithm Based on Big Data;2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE);2023-11-02

3. Encryption of Accounting Data Based on AES Algorithm;2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE);2023-11-02

4. E-commerce Product Review Analysis based on Multi-class Support Vector Machine;2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE);2023-11-02

5. Reinforcement Learning Enabled Real-Time Energy Dispatch of Energy Systems with Flexible Operational Resources;2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE);2023-11-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3