Nineteen Years of Trophic State Variation in Large Lakes of the Yangtze River Delta Region Derived from MODIS Images

Author:

Bian Yingchun,Zhao Ying,Lyu Heng,Guo FeiORCID,Li Yunmei,Xu Jiafeng,Liu Huaiqing,Ni Shang

Abstract

The Yangtze River Delta (YRD) is one of the regions with the most intensive human activities. The eutrophication of lakes in this area is becoming increasingly serious with consequent negative impacts on the water supply of the surrounding cities. But the spatial-temporal characteristics and driving factors of the trophic state of the lake in this region are still not clearly addressed. In this study, a semi-analytical algorithm for estimating the trophic index (TSI) using particle absorption at 645 nm based on MODIS images is proposed to monitor and evaluate the trophic state of 41 large lakes (larger than 10 km2) in the YRD from 2002 to 2020. The performance of the proposed algorithm is evaluated using an independent dataset. Results showed that the root-mean-square error (RMSE) of the algorithm is less than 6 and the mean absolute percentage error (MAPE) does not exceed 8%, indicating that it can be applied for remotely deriving the TSI in the YRD. The spatial-temporal patterns revealed that there were significantly more lakes with moderate eutrophication in the Lower Yangtze River (LYR) than in the Lower Huaihe River (LHR). The overall average value of the TSI reaches a maximum in summer and a minimum in winter. The TSI value in the YRD over the period 2002–2020 showed a downward trend, especially after 2013. Individually, 33 lakes showed a downward trend and 8 lakes showed an upward trend. Furthermore, marked seasonal and interannual temporal variations can be clearly observed in the LYR and LHR and the sum of the variance contributions of seasonal and interannual components is more than 50%. Multiple linear regression analysis showed that human activities can explain 65% of the variation in the lake TSI in the YRD.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3