Prediction of Forest Fire Spread Rate Using UAV Images and an LSTM Model Considering the Interaction between Fire and Wind

Author:

Li XingdongORCID,Gao HeweiORCID,Zhang Mingxian,Zhang Shiyu,Gao Zhiming,Liu Jiuqing,Sun Shufa,Hu Tongxin,Sun Long

Abstract

Modeling forest fire spread is a very complex problem, and the existing models usually need some input parameters which are hard to get. How to predict the time series of forest fire spread rate based on passed series may be a key problem to break through the current technical bottleneck. In the process of forest fire spreading, spread rate and wind speed would affect each other. In this paper, three kinds of network models based on Long Short-Term Memory (LSTM) are designed to predict fire spread rate, exploring the interaction between fire and wind. In order to train these LSTM-based models and validate their effectiveness of prediction, several outdoor combustion experiments are designed and carried out. Process data sets of forest fire spreading are collected with an infrared camera mounted on a UAV, and wind data sets are recorded using a anemometer simultaneously. According to the close relationship between wind and fire, three progressive LSTM based models are constructed, which are called CSG-LSTM, MDG-LSTM and FNU-LSTM, respectively. A Cross-Entropy Loss equation is employed to measure the model training quality, and then prediction accuracy is computed and analyzed by comparing with the true fire spread rate and wind speed. According to the performance of training and prediction stage, FNU-LSTM is determined as the best model for the general case. The advantage of FNU-LSTM is further demonstrated by doing comparison experiments with the normal LSTM and other LSTM based models which predict both fire spread rate and wind speed separately. The experiment has also demonstrated the ability of the model to the real fire prediction on the basis of two historical wildland fires.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference56 articles.

1. Technical Study on Forest Fire Loss Assessment;Di;For. Eng.,2015

2. Design of Forest Fire Identification Algorithm Based on Computer Vision;Liu;For. Eng.,2018

3. TDLAS Based Early-stage Forest Fire Detection System;Zhang;For. Eng.,2013

4. An analysis of spotting distances during the 2017 fire season in the Northern Rockies, USA

5. Future changes in extreme weather and pyroconvection risk factors for Australian wildfires

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3