ICESat-2 Marine Bathymetry: Extraction, Refraction Adjustment and Vertical Accuracy as a Function of Depth in Mid-Latitude Temperate Contexts

Author:

Coveney Seamus,Monteys Xavier,Hedley John D.,Castillo-Campo Yeray,Kelleher Brian

Abstract

Nearshore bathymetric data are used in many coastal monitoring applications, but acquisition conditions can be challenging. Shipborne surveys are prone to the risk of grounding in shallow waters, and scheduled airborne surveys often fail to coincide with optimal atmospheric and water conditions. As an alternative, since its launch in 2018, ICESat-2 satellite laser profile altimetry data provide free and readily available data on a 91-day repeat cycle, which may contain incidental bathymetric returns when suitable environmental conditions prevail. In this paper, the vertical accuracy of extracted, refraction-adjusted ICESat-2 nearshore marine bathymetric data is evaluated at four test sites in a Northern hemisphere, temperate latitude location. Multiple ICEsat-2 bathymetric values that occurred in close horizontal proximity to one another were averaged at a spatial scale of 1 m and compared with Multibeam Echosounder bathymetric survey data and Global Navigation Satellite System reference data. Mean absolute errors of less than 0.15 m were observed up to depths of 5 m, with errors of less than 0.24 m (to 6 m), 0.39 m (to 7 m) and 0.52 m (to 10 m). The occurrence of larger bathymetric errors with depth, which increase to 0.54 m at maximum photon depths of 11 m, appears to be primarily related to reduced numbers of geolocated photons with depth. The accuracies achieved up to 6 m suggest that the manual extraction, refraction adjustment and bathymetric filtering steps were effective. Overall, the results suggest that ICESat-2 bathymetric data accuracy may be sufficient to be considered for use in nearshore coastal monitoring applications where shipborne and airborne bathymetric data might otherwise be applied.

Funder

Geological Survey Ireland

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3