Author:
Lee Hoon-Keun,Choo Jaeyul,Kim Joonyoung
Abstract
Water management is a critical mission required to protect the water resources that is essential in diverse industrial applications. Amongst a variety of parameters such as level (or depth), temperature, conductivity, turbidity, and pH, the water level is the most fundamental one that needs to be monitored on a real-time basis for securing the water management system. This paper presents an overview of water level monitoring technologies based on optical fiber sensor (OFS) networks. Firstly, we introduce and compare the passive distributed and quasi-distributed (discrete) sensor networks with the recent achievements summarized. The performance (i.e., sensing range and resolution) of the OFS networks can be enhanced through diverse multiplexing techniques based on wavelength, time, coherence, space, etc. Especially, the dense wavelength division multiplexing (DWDM)-based sensor network provides remote sensing (where its reach can be extended to >40 km) with high scalability in terms of the channel number that determines the spatial resolution. We review the operation principle and characteristics of the DWDM-based OFS network with full theoretical and experimental analysis being provided. Furthermore, the key system functions and considerations (such as the link protection from physical damages, self-referencing, management of sensing units, and so on) are discussed that could be a guideline on the design process of the passive OFS network.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献