Band Gaps and Optical Properties of RENiO3 upon Strain: Combining First-Principles Calculations and Machine Learning

Author:

Tang Xuchang1,Luo Zhaokai1,Cui Yuanyuan1

Affiliation:

1. School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China

Abstract

Rare earth nickel-based perovskite oxides (RENiO3) have been widely studied over recent decades because of their unique properties. In the synthesis of RENiO3 thin films, a lattice mismatch frequently exists between the substrates and the thin films, which may affect the optical properties of RENiO3. In this paper, the first-principles calculations were employed to study the electronic and optical properties of RENiO3 under strain. The results showed that with the increase in tensile strength, the band gap generally shows a widening trend. For optical properties, the absorption coefficients increase with the enhancement of photon energies in the far-infrared range. The compressive strain increases the light absorption, while the tensile strain suppresses it. For the reflectivity spectrum in the far-infrared range, a minimum reflectivity displays around the photon energy of 0.3 eV. The tensile strain enhances the reflectivity in the range of 0.05–0.3 eV, whereas it decreases it when the photon energies are larger than 0.3 eV. Furthermore, machine learning algorithms were applied and found that the planar epitaxial strain, electronegativity, volume of supercells, and rare earth element ion radius play key roles in the band gaps. Photon energy, electronegativity, band gap, the ionic radius of the rare earth element, and the tolerance factor are key parameters significantly influencing the optical properties.

Funder

Shanghai Municipal Science and Technology Commission

National Natural Science Foundation of China

Innovation Program of Shanghai Municipal Education Commission

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3