Performance Evaluation of Radiation-Shielding Materials and Process Technology for Manufacturing Skin Protection Cream

Author:

Kim Seon-Chil1ORCID

Affiliation:

1. Department of Biotechnology, Keimyung University, 1095 Dalgubeol-Daero, Daegu 42601, Republic of Korea

Abstract

Personnel using X-ray devices, the main source of radiation in medical institutions, are primarily affected by scattered rays. When interventionists use radiation for examinations/treatments, their hands may enter the radiation-generating area. The shielding gloves used for protection against these rays restrict movement and cause discomfort. Here, a shielding cream that directly adheres to the skin was developed and examined as a personal protective device; further, its shielding performance was verified. Bismuth oxide and barium sulfate were selected as shielding materials and comparatively evaluated in terms of thickness, concentration, and energy. With increasing wt% of the shielding material, the protective cream became thicker, resulting in improved protection. Furthermore, the shielding performance improved with increasing mixing temperature. Because the shielding cream is applied to the skin and has a protective effect, it must be stable on the skin and easy to remove. During manufacturing, the bubbles were removed, and the dispersion improved by 5% with increasing stirring speed. During mixing, the temperature increased as the shielding performance increased by 5% in the low-energy region. In terms of the shielding performance, bismuth oxide was superior to barium sulfate by approximately 10%. This study is expected to facilitate the mass production of cream in the future.

Funder

Ministry of Science and ICT

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3