Sustainable Lifecycle of Perforated Metal Materials

Author:

Mironovs Viktors1,Kuzmina Jekaterina1,Serdjuks Dmitrijs2,Usherenko Yulia1ORCID,Lisicins Mihails1

Affiliation:

1. Scientific Laboratory of Powder Materials, Faculty of Mechanical Engineering, Transport and Aeronautics, Riga Technical University, 6B Kipsalas Street, LV-1048 Riga, Latvia

2. Institute of Structural Engineering, Riga Technical University, 6A Kipsalas Street, LV-1048 Riga, Latvia

Abstract

In an era of rapidly growing consumer demand and the subsequent development of production, light materials and structures with a wide range of applications are becoming increasingly important in the field of construction and mechanical engineering, including aerospace engineering. At the same time, one of the trends is the use of perforated metal materials (PMMs). They are used as finishing, decorative and structural building materials. The main feature of PMMs is the presence of through holes of a given shape and size, which makes it possible to have low specific gravity; however, their tensile strength and rigidity can vary widely depending on the source material. In addition, PMMs have several properties that cannot be achieved with solid materials; for example, they can provide considerable noise reduction and partial light absorption, significantly reducing the weight of structures. They are also used for damping dynamic forces, filtering liquids and gases and shielding electromagnetic fields. For the perforation of strips and sheets, cold stamping methods are usually used, carried out on stamping presses, particularly using wide-tape production lines. Other methods of manufacturing PMMs are rapidly developing, for example, using liquid and laser cutting. An urgent but relatively new and little-studied problem is the recycling and further efficient use of PMMs, primarily such materials as stainless and high-strength steels, titanium, and aluminum alloys. The life cycle of PMMs can be prolonged because they can be repurposed for various applications such as constructing new buildings, designing elements, and producing additional products, making them more environmentally friendly. This work aimed to overview sustainable ways of PMM recycling, use or reuse, proposing different ecological methods and applications considering the types and properties of PMM technological waste. Moreover, the review is accompanied by graphical illustrations of real examples. PMM waste recycling methods that can prolong their lifecycle include construction technologies, powder metallurgy, permeable structures, etc. Several new technologies have been proposed and described for the sustainable application of products and structures based on perforated steel strips and profiles obtained from waste products during stamping. With more developers aiming for sustainability and buildings achieving higher levels of environmental performance, PMM provides significant environmental and aesthetic advantages.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

General Materials Science

Reference62 articles.

1. Toward a Sustainable Materials System;Olivetti;Science,2018

2. (2023, March 27). European Raw Materials Alliance. Available online: https://single-market-economy.ec.europa.eu/industry/strategy/industrial-alliances/european-raw-materials-alliance_en.

3. Graedel, T.E., Allwood, J., Birat, J.-P., Buchert, M., Hagelüken, C., Reck, B.K., Sibley, S.F., and Sonnemann, G. (2011). Recycling Rates of Metals: A Status Report, United Nations Environment Programme.

4. Towards a More Sustainable Metal Use—Lessons Learned from National Strategy Documents;Weiser;Resour. Policy,2020

5. Perforated Metal Made from Recycled Material in the Application of Building Façade;Suharjanto;IOP Conf. Ser. Earth Environ. Sci.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3