Influence of Microstructure and Mechanical Properties of Dissimilar Rotary Friction Welded Inconel to Stainless Steel Joints

Author:

Beeravolu Akhil Reddy1,Babu Nagumothu Kishore1ORCID,Talari Mahesh Kumar1ORCID,Rehman Ateekh Ur2ORCID,Srirangam Prakash3

Affiliation:

1. Department of Metallurgical and Materials Engineering, National Institute of Technology, Warangal 506004, India

2. Department of Industrial Engineering, College of Engineering, King Saud University, Riyadh 11451, Saudi Arabia

3. Warwick Manufacturing Group, University of Warwick, Coventry CV4 7AL, UK

Abstract

The present study aims to evaluate the microstructure, grain size, and mechanical properties of the dissimilar AISI 316L/Inconel 718 (IN 718) rotary friction welded joints under both the as-welded and post-weld heat treatment (PWHT) conditions. Because of reduced flow strength at elevated temperatures, the AISI 316L and IN 718 dissimilar weldments exhibited more flash formation on the AISI 316L side. At higher rotating speeds during friction welding, an intermixing zone was created at the weld joint interface due to the material softening and squeezing. The dissimilar welds exhibited distinctive regions, including the fully deformed zone (FDZ), heat-affected zone (HAZ), thermo-mechanically affected zone (TMAZ), and the base metal (BM), located on either side of the weld interface. The dissimilar friction welds, AISI 316L/IN 718 ST and AISI 316L/IN 718 STA, exhibited yield strength (YS) of 634 ± 9 MPa and 602 ± 3 MPa, ultimate tensile strength (UTS) of 728 ± 7 MPa and 697± 2 MPa, and % elongation (% El) of 14 ± 1.5 and 17 ± 0.9, respectively. Among the welded samples, PWHT samples exhibited high strength (YS = 730 ± 2 MPa, UTS = 828 ± 5 MPa, % El = 9 ± 1.2), and this may be attributed to the formation of precipitates. Dissimilar PWHT friction weld samples resulted in the highest hardness among all the conditions in the FDZ due to the formation of precipitates. On the AISI 316L side, prolonged exposure to high temperatures during PWHT resulted in grain growth and decreased hardness. During the tensile test at ambient temperature, both the as-welded and PWHT friction weld joints failed in the HAZ regions of the AISI 316L side.

Funder

King Saud University

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3