Abstract
To keep a better trade-off between robustness and imperceptibility is difficult for traditional digital watermarks. Therefore, an adaptive image watermarking method combining singular value decomposition (SVD) and the Wang–Landau (WL) sampling method is proposed to solve the problem. In this method, the third-level approximate sub-band obtained by applying the three-level wavelet transform is decomposed by SVD to obtain the principal component, which is firstly selected as the embedded position. Then, the information is finally embedded into the host image by the scaling factor. The Wang–Landau sampling method is devoted to finding the best embedding coefficient through the proposed objective evaluation function, which is a global optimization algorithm. The embedding strength is adaptively adjusted by utilizing the historical experience, which overcomes the problem of falling into local optimization easily in many traditional optimization algorithms. To affirm the reliability of the proposed method, several image processing attacks are applied and the experimental results are given in detail. Compared with other existing related watermarking techniques based on both qualitative and quantitative evaluation parameters, such as peak signal to noise ratio (PSNR) and normalized cross-correlation (NC), this method has been proven to achieve a trade-off between robustness and invisibility.
Funder
National Natural Science Foundation of China
Major Program of National Fund of Philosophy and Social Science of China
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献