Abstract
We study the global asymptotic stability problem with respect to the fractional-order quaternion-valued bidirectional associative memory neural network (FQVBAMNN) models in this paper. Whether the real and imaginary parts of quaternion-valued activation functions are expressed implicitly or explicitly, they are considered to meet the global Lipschitz condition in the quaternion field. New sufficient conditions are derived by applying the principle of homeomorphism, Lyapunov fractional-order method and linear matrix inequality (LMI) approach for the two cases of activation functions. The results confirm the existence, uniqueness and global asymptotic stability of the system’s equilibrium point. Finally, two numerical examples with their simulation results are provided to show the effectiveness of the obtained results.
Funder
King Mongkut's University of Technology Thonburi
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献