Abstract
A potentially useful Cyber-Physical Systems element is a modern forward error correction (FEC) coding system, utilizing a code selected from the broad class of Low-Density Parity-Check (LDPC) codes. In this paper, development of a hardware implementation in an FPGAs of the decoder for Quasi-Cyclic (QC-LDPC) subclass of codes is presented. The decoder can be configured to support the typical decoding algorithms: Min-Sum or Normalized Min-Sum (NMS). A novel method of normalization in the NMS algorithm is proposed, one that utilizes combinational logic instead of arithmetic units. A comparison of decoders with different bit-lengths of data (beliefs that are messages propagated between computing units) is also provided. The presented decoder has been implemented with a distributed control system. Experimental studies were conducted using the Intel Cyclone V FPGA module, which is a part of the developed testing environment for LDPC coding systems.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献