Abstract
Let E represent any of the spaces M u , C ϑ ( ϑ = { b , b p , r } ) , and L q ( 0 < q < ∞ ) of bounded, ϑ -convergent, and q-absolutely summable double sequences, respectively, and E ˜ be the domain of the four-dimensional (4D) infinite sequential band matrix B ( r ˜ , s ˜ , t ˜ , u ˜ ) in the double sequence space E, where r ˜ = ( r m ) m = 0 ∞ , s ˜ = ( s m ) m = 0 ∞ , t ˜ = ( t n ) n = 0 ∞ , and u ˜ = ( u n ) n = 0 ∞ are given sequences of real numbers in the set c ∖ c 0 . In this paper, we investigate the double sequence spaces E ˜ . First, we determine some topological properties and prove several inclusion relations under some strict conditions. Then, we examine α -, β ( ϑ ) -, and γ -duals of E ˜ . Finally, we characterize some new classes of 4D matrix mappings related to our new double sequence spaces and conclude the paper with some significant consequences.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献