Affiliation:
1. School of Artificial Intelligence, Beijing Normal University, Beijing 100875, China
Abstract
High-resolution digital elevation models (DEMs) are important for relevant geoscience research and practical applications. Compared with traditional hardware-based methods, super-resolution (SR) reconstruction techniques are currently low-cost and feasible methods used for obtaining high-resolution DEMs. Single-image super-resolution (SISR) techniques have become popular in DEM SR in recent years. However, DEM super-resolution has not yet utilized reference-based image super-resolution (RefSR) techniques. In this paper, we propose a terrain self-similarity-based transformer (SSTrans) to generate super-resolution DEMs. It is a reference-based image super-resolution method that automatically acquires reference images using terrain self-similarity. To verify the proposed model, we conducted experiments on four distinct types of terrain and compared them to the results from the bicubic, SRGAN, and SRCNN approaches. The experimental results show that the SSTrans method performs well in all four terrains and has outstanding advantages in complex and uneven surface terrains.
Funder
Joint Research Fund in Astronomy
Subject
General Earth and Planetary Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献