Deep Learning-Based Framework for Soil Moisture Content Retrieval of Bare Soil from Satellite Data

Author:

Dabboor Mohammed1ORCID,Atteia Ghada2ORCID,Meshoul Souham2ORCID,Alayed Walaa2

Affiliation:

1. Science and Technology Branch, Environment and Climate Change Canada, Dorval, QC H9P 1J3, Canada

2. Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

Abstract

Machine learning (ML) is a branch of artificial intelligence (AI) that has been successfully applied in a variety of remote sensing applications, including geophysical information retrieval such as soil moisture content (SMC). Deep learning (DL) is a subfield of ML that uses models with complex structures to solve prediction problems with higher performance than traditional ML. In this study, a framework based on DL was developed for SMC retrieval. For this purpose, a sample dataset was built, which included synthetic aperture radar (SAR) backscattering, radar incidence angle, and ground truth data. Herein, the performance of five optimized ML prediction models was evaluated in terms of soil moisture prediction. However, to boost the prediction performance of these models, a DL-based data augmentation technique was implemented to create a reconstructed version of the available dataset. This includes building a sparse autoencoder DL network for data reconstruction. The Bayesian optimization strategy was employed for fine-tuning the hyperparameters of the ML models in order to improve their prediction performance. The results of our study highlighted the improved performance of the five ML prediction models with augmented data. The Gaussian process regression (GPR) showed the best prediction performance with 4.05% RMSE and 0.81 R2 on a 10% independent test subset.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3