Deep Machine Learning Based Possible Atmospheric and Ionospheric Precursors of the 2021 Mw 7.1 Japan Earthquake

Author:

Draz Muhammad Umar1ORCID,Shah Munawar1ORCID,Jamjareegulgarn Punyawi2ORCID,Shahzad Rasim1,Hasan Ahmad M.3,Ghamry Nivin A.4

Affiliation:

1. Department of Space Science, Space Education and GNSS Lab, National Center of GIS & Space Applications, Institute of Space Technology, Islamabad 44000, Pakistan

2. Department of Electrical Engineering, Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Prince of Chumphon Campus, Chumphon 86160, Thailand

3. Faculty of Engineering, Future University in Egypt, Cairo 11835, Egypt

4. Faculty of Computers and Artificial Intelligence, Cairo University, Giza 12613, Egypt

Abstract

Global Navigation Satellite System (GNSS)- and Remote Sensing (RS)-based Earth observations have a significant approach on the monitoring of natural disasters. Since the evolution and appearance of earthquake precursors exhibit complex behavior, the need for different methods on multiple satellite data for earthquake precursors is vital for prior and after the impending main shock. This study provided a new approach of deep machine learning (ML)-based detection of ionosphere and atmosphere precursors. In this study, we investigate multi-parameter precursors of different physical nature defining the states of ionosphere and atmosphere associated with the event in Japan on 13 February 2021 (Mw 7.1). We analyzed possible precursors from surface to ionosphere, including Sea Surface Temperature (SST), Air Temperature (AT), Relative Humidity (RH), Outgoing Longwave Radiation (OLR), and Total Electron Content (TEC). Furthermore, the aim is to find a possible pre-and post-seismic anomaly by implementing standard deviation (STDEV), wavelet transformation, the Nonlinear Autoregressive Network with Exogenous Inputs (NARX) model, and the Long Short-Term Memory Inputs (LSTM) network. Interestingly, every method shows anomalous variations in both atmospheric and ionospheric precursors before and after the earthquake. Moreover, the geomagnetic irregularities are also observed seven days after the main shock during active storm days (Kp > 3.7; Dst < −30 nT). This study demonstrates the significance of ML techniques for detecting earthquake anomalies to support the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) mechanism for future studies.

Funder

Academic Melting Pot of KMITL research fund

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3