Endothelialization of Polyethylene Terephthalate Treated in SO2 Plasma Determined by the Degree of Material Cytotoxicity

Author:

Vesel AlenkaORCID,Recek NinaORCID,Motaln Helena,Mozetic Miran

Abstract

Improving the biocompatibility of polyethylene terephthalate (PET) vascular grafts is an important task for avoiding thrombus formation. Therefore, SO2 plasma at various treatment periods were used to modify PET surface properties by forming sulfate functional groups. These groups were shown to act antithrombogenically, ensuring good hemocompatibility of the materials, although the biocompatibility of such materials still remains a mystery. For this reason, the adhesion and viability of HUVEC cells on SO2 plasma-modified PET surfaces were studied, and the possible toxicity of the tested material was determined using two different assays, MTT (metabolic activity assay) and SRB (in-vitro toxicology assay). Changes in chemical composition, morphology and wettability were determined as well. Improved endothelialization was observed for all plasma-treated samples, with the most optimal being the sample treated for 80 s, which can be explained by it having the best combination of surface functionalization, roughness and morphology. Furthermore, toxicity was observed to some extent on the sample treated for 160 s, indicating the lowest cell density among the plasma-treated samples. X-ray photoelectron spectroscopy showed increased oxygen and sulfur content on the surface, which was independent on treatment time. Surface roughness of the plasma-treated samples increased, reaching its maximum after 80 s of treatment, and decreased thereafter.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3