Access Control and Pilot Allocation for Machine-Type Communications in Crowded Massive MIMO Systems

Author:

Vo Ta-HoangORCID,Ding Zhi,Pham Quoc-Viet,Hwang Won-Joo

Abstract

Massive machine-type communication (mMTC) in 5G New Radio (5G-NR) or the Internet of Things (IoT) is a network of physical devices such as vehicles, smart meters, sensors, and smart appliances, which can communicate and interact in real time without human intervention. In IoT systems, the number of networked devices is expected to be in the tens of billions, while radio resources remain scarce. To connect the massive number of devices with limited bandwidth, it is crucial to develop new access solutions that can improve resource efficiency and reduce control overhead as well as access delay. The key idea is controlling the number of arrival devices that want to access the system, and then allowing only the strongest device (that has the largest channel gain and each device is able to check whether it is the strongest device) be able to transit to BS. In this paper, we consider a random access problem in massive MIMO context for the collision resolution, in which the access class barring (ACB) factor is dynamically adjusted in each time slot to maximize access success rate for the strongest-user collision resolution (SUCRe) protocol. We propose the dynamic ACB scheme to find optimal ACB factor in the next time slot and then apply SUCRe protocol to achieve a good performance. This method is called dynamic access class barring combined strongest-user collision resolution (DACB-SUCR). In addition, we investigate two different ACB schemes that consist of the fixed ACB and the traffic-aware ACB to compare with the proposed dynamic ACB. Analysis and simulation results demonstrate that, compared with SUCRe protocol, the proposed DACB-SUCR method can remarkably reduce pilot collision, and increase access success rate. It is also shown that the dynamic ACB gives better performance than the fixed ACB and the traffic-aware ACB.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3