DA-OCBA: Distributed Asynchronous Optimal Computing Budget Allocation Algorithm of Simulation Optimization Using Cloud Computing

Author:

Wang Yukai,Tang Wenjie,Yao Yiping,Zhu Feng

Abstract

The ranking and selection of simulation optimization is a very powerful tool in systems engineering and operations research. Due to the influence of randomness, the algorithms for ranking and selection need high and uncertain amounts of computing power. Recent advances in cloud computing provide an economical and flexible platform to execute these algorithms. Among all ranking and selection algorithms, the optimal computing budget allocation (OCBA) algorithm is one of the most efficient. However, because of the lack of sufficient samples that can be executed in parallel at each stage, some features of the cloud-computing platform, such as parallelism, scalability, flexibility, and symmetry, cannot be fully utilized. To solve these problems, this paper proposes a distributed asynchronous OCBA (DA-OCBA) algorithm. Under the framework of parallel asynchronous simulation, this algorithm takes advantage of every idle docker container to run better designs in advance that are selected by an asymptotic allocation rule. The experiment demonstrated that the efficiency of simulation optimization for DA-OCBA was clearly higher than that for the traditional OCBA on the cloud platform with symmetric architecture. As the number of containers grew, the speedup of DA-OCBA was linearly increasing for simulation optimization.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference47 articles.

1. Simulation-Based Optimization;Gosavi,2015

2. Handbook of Simulation Optimization;Fu,2015

3. Simulation optimization: a review of algorithms and applications

4. Balancing Search and Estimation in Random Search Based Stochastic Simulation Optimization

5. Design and analysis of simulation experiments;Kleijnen,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3