Numerical Study for Magnetohydrodynamic Flow of Nanofluid Due to a Rotating Disk with Binary Chemical Reaction and Arrhenius Activation Energy

Author:

Asma Mir,Othman W.A.M.,Muhammad Taseer,Mallawi Fouad,Wong B.R.

Abstract

This article examines magnetohydrodynamic 3D nanofluid flow due to a rotating disk subject to Arrhenius activation energy and heat generation/absorption. Flow is created due to a rotating disk. Velocity, temperature and concentration slips at the surface of the rotating disk are considered. Effects of thermophoresis and Brownian motion are also accounted. The nonlinear expressions have been deduced by transformation procedure. Shooting technique is used to construct the numerical solution of governing system. Plots are organized just to investigate how velocities, temperature and concentration are influenced by various emerging flow parameters. Skin-friction Local Nusselt and Sherwood numbers are also plotted and analyzed. In addition, a symmetry is noticed for both components of velocity when Hartman number enhances.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3