Study of a Null-Flux Coil Electrodynamic Suspension Structure for Evacuated Tube Transportation

Author:

Guo ,Li ,Zhou

Abstract

This paper focuses on the study of a null-flux coil electrodynamic suspension structure for evacuated tube transportation (ETT). A Maglev system in evacuated tubes is a promising concept for high speed transportation systems, and the design of levitation structure is a critical part among the subsystems. The whole system with functions of levitation, guidance, and propulsion is proposed in this paper, and the utilization of magnetic fields from both sides of magnets makes the system simple. The figure eight shaped null-flux coil suspension structure is adopted to provide a high levitation-drag ratio. The equivalent circuit model of the null-flux coil structure is established by employing the dynamic circuit theory. Based on the determination of the mutual inductance between the null-flux coil and the moving magnet, electromagnetic forces are calculated through an energy method. The validity of the dynamic circuit model is verified by comparing the calculation with the 3D finite element analysis (FEM) results, and the working principle of the null-flux coil structure is described. The effects of vehicle speed and the time constant of the coil on the electromagnetic forces are studied at the bottom level of force impulses in one coil and verified by FEM simulation. The characteristics of electrodynamic forces as functions of the magnet speed, the vertical displacements, and the lateral displacements are investigated based on the dynamic circuit theory, and the levitation-drag ratio is compared with that of plate type structure. The results show that the proposed structure is a promising option for application in ETT, and the following study will focus on the dynamic research of the electrodynamic suspension (EDS) system.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3