The Cauchy Conjugate Gradient Algorithm with Random Fourier Features

Author:

Huang Xuewei,Wang ShiyuanORCID,Xiong Kui

Abstract

Random Fourier mapping (RFM) in kernel adaptive filters (KAFs) provides an efficient method to curb the linear growth of the dictionary by projecting the original input data into a finite-dimensional space. The commonly used measure in RFM-based KAFs is the minimum mean square error (MMSE), which causes performance deterioration in the presence of non-Gaussian noises. To address this issue, the minimum Cauchy loss (MCL) criterion has been successfully applied for combating non-Gaussian noises in KAFs. However, these KAFs using the well-known stochastic gradient descent (SGD) optimization method may suffer from slow convergence rate and low filtering accuracy. To this end, we propose a novel robust random Fourier features Cauchy conjugate gradient (RFFCCG) algorithm using the conjugate gradient (CG) optimization method in this paper. The proposed RFFCCG algorithm with low complexity can achieve better filtering performance than the KAFs with sparsification, such as the kernel recursive maximum correntropy algorithm with novelty criterion (KRMC-NC), in stationary and non-stationary environments. Monte Carlo simulations conducted in the time-series prediction and nonlinear system identification confirm the superiorities of the proposed algorithm.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference35 articles.

1. Online Learning with Kernels

2. Kernel Adaptive Filtering: A Comprehensive Introduction;Liu,2010

3. The Kernel Least-Mean-Square Algorithm

4. Kernel affine projection algorithms;Liu;EURASIP J. Adv. Signal Process.,2008

5. The Kernel Recursive Least-Squares Algorithm

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3